ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-0417
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences
    Notes: Abstract The Junggar Basin in NW China contains lacustrine hydrocarbon source rocks which are among the highest quality of hydrocarbon potential in the world. Oil reservoirs in the basin are very substantial: target reservoirs span Carboniferous to Tertiary strata and include Permo-Triassic lacustrine and fluvial sandstones. The Junggar Basin was a foreland basin during the late Permian to Cenozoic, possibly with strike-slip tectonics at the southern margin during Mesozoic time. The Cangfanggou Group, as one of the major reservoirs, is well-exposed in the eastern part of the southern Junggar Basin. A measured outcrop section and a number of borehole logs coupled with resistivity logs were used to attempt sequence stratigraphic analysis. Detailed sedimentological studies on the outcrops and borehole cores have demonstrated that the Cangfanggou Group is characterized by alternating lacustrine and fluvial deposits. Four depositional sequences have been recognized. For each sequence, the basal boundary is marked by erosional truncation of fluvial channel conglomeratic sandstones in sharp contact with underlying lacustrine or floodplain mudstones. The top of each lowstand systems tract is normally overlain by the transition to lacustrine or maximum flooding surface. The transgressive systems tract is normally not identifiable at the basin margin, but was developed in the basinward area and characterized by interbedded fining-upward distal fluvial and shallow lacustrine deposits. The highstand systems tract at the basin margin is characterized by very thick floodplain mudstones or shallow lacustrine deposits, and by typical coarsening-upward parasequences of shallow lacustrine deposits in more basinward areas. Sediment input to the basin was controlled by tectonics and climate. Depositional sequences were probably controlled by fluctuating change of lake level: this was in turn controlled by climate (runoff), modified by tectonics in specific areas. The sandstones studied are exclusively volcanic litharenites. Diagenetic studies suggest that the calcite cementation, pore-filling clay minerals and zeolites occluded substantial porosity in the sandstones examined because they are compositionally immature. However, notable secondary porosity in varying proportions is present in the sandstones of the Cangfanggou Group, resulting from the dissolution of unstable detrital grains. The lowstand fluvial/distal fluvial sandstones recorded the highest average porosity and highest permeability, in which some primary porosity may remain because early formed clay coatings inhibited further compaction. The combination of residual primary porosity and significant amount of secondary porosity in the sandstones of the Cangfanggou Group may constitute moderate to good reservoirs. In contrast, the lacustrine fine-grained sandstones is characterized by clay authigenesis and zeolitization, in which the porosity was obliterated by the zeolites and extensive illitization; the lowstand fluvial channel sandstones in the basin margin areas are characterized by extensive calcite cementation which greatly reduced the porosity and permeability.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...