ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 46 (1996), S. 81-90 
    ISSN: 1573-0867
    Keywords: elemental sulfur ; granule size ; nitrogen ; phosphorus ; potassium ; S oxidation ; sulfur fertilizers
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Experiments were undertaken to determine the effect of granule size and nutrients in granulated compound fertilizers fortified with finely divided elemental sulfur (So) on the rate of So oxidation. In one experiment, So was banded together with or apart from triple superphosphate (TSP) while in two others, So was granulated with nutrient and inert carriers. A fourth experiment examined response to S in an So-fortified TSP from a range of granule sizes. Response and, in some cases, So recovery (using 35S labels) by test crops (maize, wheat, upland rice) was measured. In all experiments, P mixed with So increased plant growth and S recovery above treatments in which P and So were physically separated. There was however, no effect of distance of separation on S recovery. In one experiment, N as urea and N and P as diammonium phosphate (DAP) were also found to enhance response to So although to a lesser degree than P alone. These observations were attributed to a nutritional requirement of So-oxidizing microorganisms for P and N. Granulation of So with carriers also influenced oxidation rate, as inferred from the fertilizer S recovery. For a given So concentration, the effect was inversely proportional to the mean diameter of granules. It is shown that this relationship can be explained if one assumes that So particles in granules collapse into a fixed number of aggregates per granule irrespective of granule size when the soluble nutrient carrier dissolves and diffuses away from the point of application.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...