ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Applied mathematics and mechanics 10 (1989), S. 1019-1027 
    ISSN: 1573-2754
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Mathematics , Physics
    Notes: Abstract It is of great practical importance to analyze the shakedown of shell structures under cyclic loading, especially of those made of strain hardening materials. In this paper, some further understanding of the shakedown theorem for kinematic hardening materials has been made, and it is applied to analyze the shakedown of shell structures. Though the residual stress of a real state is related to plastic strain, the time-independent residual stress field $$\bar \sigma _{ij}^r $$ as we will show in the theorem may be unrelated to the time-independent kinematically admissible plastic strain field $$\overline \varepsilon _{i^j }^\rho $$ . For the engineering application, it will be much more convenient to point this out clearly and definitely, otherwise it will be very difficult. Also we have proposed a new method of proving this theorem. The above theorem is applied to the shakedown analysis of a cylindrical shell with hemispherical ends. According to the elastic solution, various possible residual stress and plastic strain fields, the shakedown analysis of the structure can be reduced to a mathematical programming problem. The results of calculation show that the shakedown load of strain hardening materials is about 30–40% higher than that of ideal plastic materials. So it is very important to consider the hardening of materials in the shakedown analysis, for it can greatly increase the structure design capacity, and meanwhile provide a scientific basis to improve the design of shell structures.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...