ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Pure and applied geophysics 147 (1996), S. 675-718 
    ISSN: 1420-9136
    Keywords: Elastic waves ; sphere ; scattering ; diffraction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Scattering of an arbitrary elastic wave incident upon a spherically symmetric inclusion is considered and solutions are developed in terms of the spherical vector system of Petrashen, which produces results in terms of displacements rather than displacement potentials and in a form suitable for accurate numerical computations. Analytical expressions for canonical scattering coefficients are obtained for both the cases of incidentP waves and incidentS waves. Calculations of energy flux in the scattered waves lead to elastic optical theorems for bothP andS waves, which relate the scattering cross sections to the amplitude of the scattered fields in the forward direction. The properties of the solutions for a homogeneous elastic sphere, a sphere filled by fluid, and a spherical cavity are illustrated with scattering cross sections that demonstrate important differences between these types of obstacles. A general result is that the frequency dependence of the scattering is defined by the wavelength of the scattered wave rather than the wavelength of the incident wave. This is consistent with the finding that the intensity of theP→S scattering is generally much stronger than theS→P scattering. When averaged over all scattering angles, the mean intensity of theP→S converted waves is2V p 2 /V s 4 times the mean intensity of theS→P converted waves, and this ratio is independent of frequency. The exact solutions reduce to simple and easily used expressions in the case of the low frequency (Rayleigh) approximation and the low contrast (Rayleigh-Born) approximation. The case of energy absorbing inclusions can also be obtained by assigning complex values to the elastic parameters, which leads to the result that an increase in attenuation within the inclusion causes an increased scattering cross section with a marked preference for scatteredS waves. The complete generality of the results is demonstrated by showing waves scattered by the earth's core in the time domain, an example of high-frequency scattering that reveals a very complex relationship between geometrical arrivals and diffracted waves.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...