ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Pure and applied geophysics 132 (1990), S. 363-400 
    ISSN: 1420-9136
    Keywords: Crustal scattering ; apparent attenuation ; anisotropy ; physical models
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract We study wave propagation through isotropic and anisotropic scatterer distributions in order to observe azimuthal variations in velocity and apparent attenuation. Using thin aluminum plates as physical models, we obtained seismograms for compressional and shear wave propagation through heterogeneous media. Three random distributions of scatterers are studied: circular scatterers in isotropic distributions (modeling circular scatterers), elongated scatterers in isotropic distributions (modeling randomly oriented elliptical scatterers), and elongated scatterers in anisotropic distributions (modeling aligned elliptical scatterers). All scatterers had approximately the same cross-sectional area and were filled with epoxy in order to reduce the impedance contrast. In addition to seismograms recorded for no scatterers, seismograms were recorded for several scatterer volume fractions. Azimuths were measured relative to the long axis of the aligned elongated scatterers. Velocities were calculated using travel times and phase shifts at low frequencies. The velocities measured from the data were compared to simple low-frequency average-velocity theories based on thin lamellae or on distributions of penny-shaped cracks. The apparent attenuation for different scatterer distributions was computed using spectral ratios. Comparisons of the results for circular and randomly oriented elongated scatterers were made to determine the effects of scatterer shape. As expected, the circular and randomly oriented elongated scatterers showed no systematic azimuthal variation in velocity. The velocity anomalies were systematically larger for the randomly oriented elongated scatterers than for the circular scatterers. Both methods of theoretical estimation for the isotropic velocities produced velocities significantly larger than those measured. The spectral ratios showed more apparent attenuation for the randomly oriented elongated scatterers than for the circular scatterers. Comparisons of the results for the randomly oriented and aligned elongated scatterers were made to determine the effects of anisotropy in the scatterer distribution. Compressional waves for the aligned elongated scatterers with wave propagation parallel to the scatterers had larger velocities than for the aligned elongated scatterers with wave propagation perpendicular to the scatterers for all velocity calculations. Shear wave velocities were complicated by an anomalous phase change in the shear wave seismograms for azimuths less than 40° and were not as conclusive. The general trend of the theoretical velocities is similar to the velocities calculated from the data. There are, however, what appear to be significant differences. The spectral ratios showed more apparent attenuation for the randomly oriented elongated scatterers than for the aligned elongated scatterers with wave propagation parallel to the scatterers, and less attenuation than for the aligned elongated scatterers with wave propagation perpendicular to the scatterers.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...