ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1420-9136
    Keywords: Seismic risk ; extreme values ; strain energy ; circum-Pacific
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract In a previous paper (Makropoulos andBurton, 1983) the seismic risk of the circum-Pacific belt was examined using a ‘whole process’ technique reduced to three representative parameters related to the physical release of strain energy, these are:M 1, the annual modal magnitude determined using the Gutenberg-Richter relationship;M 2, the magnitude equivalent to the total strain energy release rate per annum, andM 3, the upper bound magnitude equivalent to the maximum strain energy release in a region. The risk analysis is extended here using the ‘part process’ statistical model of Gumbel's IIIrd asymptotic distribution of extreme values. The circum-Pacific is chosen being a complete earthquake data set, and the stability postulate on which asymptotic distributions of extremes are deduced to give similar results to those obtained from ‘whole process’ or exact distributions of extremes is successfully checked. Additionally, when Gumbel III asymptotic distribution curve fitting is compared with Gumbel I using reduced chi-squared it is seen to be preferable in all cases and it also allows extensions to an upper-bounded range of magnitude occurrences. Examining the regional seismicity generates several seismic risk results, for example, the annual mode for all regions is greater thanm(1)=7.0, with the maximum being in the Japan, Kurile, Kamchatka region atm(1)=7.6. Overall, the most hazardous areas are situated in this northwestern region and also diagonally opposite in the southeastern circum-Pacific. Relationships are established between the Gumbel III parameters and quantitiesm 1(1),X 2 and ω, quantities notionally similar toM 1,M 2 andM 3 although ω is shown to be systematically larger thanM; thereby giving a physical link through strain energy release to seismic risk statistics. Inall regions of the circum-Pacific similar results are obtained forM 1,M 2 andM 3 and the notionally corresponding statistical quantitiesm 1(1),X 2 and ω, demonstrating that the relationships obtained are valid over a wide range of seismotectonic enviroments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...