ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2703-2716 
    ISSN: 0887-6266
    Keywords: calorimetry ; dielectrics ; diffusion ; monoamine-triepoxide ; thermoset ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Calorimetry and dielectric relaxation spectroscopy during the growth of a polymer network in the stoichiometric mixture of a triepoxide with 4-chloroaniline have been performed in separate experiments to investigate the increase in the relaxation time with the number of covalent bonds. A comparison with the corresponding study of triepoxide-aniline and triepoxide-3-chloroaniline mixtures shows that steric hindrance of the amine group by chlorine slows the molecular dynamics and the relaxation time of the state containing a fixed number of bonds. The polymerization kinetics measured during ramp heating does not yield a reliable activation energy. A recent empirical relation between the relaxation time and the extent of polymerization, and the condition for the onset of diffusion-control kinetics have been examined using the data for these three polymerizing mixtures. The results show substantial deviations from the empirical relation and appear to conflict with our basic understanding of the polymerization process. It is shown mathematically that features attributed to the onset of diffusion-controlled kinetics can arise from thermochemical behavior alone, without reference to the molecular dynamics. An earlier theory for the change in the kinetics of an addition reaction from mass control to diffusion control has been considered, and is seen as relevant to the polymerization reactions. It is argued that the dielectric relaxation rate does not directly indicate the chemical reaction rate because the reorientational motion of the dipolar entities may not be coupled to the rotational and translational diffusion that brings the sterically hindered chemically reacting sites together. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2703-2716, 1998
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...