ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2499-2511 
    ISSN: 0887-6266
    Keywords: heat capacity ; poly(trimethylene terephthalate) ; entropy ; enthalpy ; free enthalpy ; heats of transition ; glass transition ; melting ; crystallinity ; rigid-amorphous fraction ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The heat capacity of poly(trimethylene terephthalate) (PTT) has been measured using adiabatic calorimetry, standard differential scanning calorimetry (DSC), and temperature-modulated differential scanning calorimetry (TMDSC). The heat capacities of the solid and liquid states of semicrystalline PTT are reported from 5 to 570 K. The semicrystalline PTT has a glass transition temperature of 331 K. Between 340 and 480 K, PTT can show exothermic ordering depending on the prior degree of crystallization. The melting endotherm of semicrystalline samples occurs between 480 and 505 K, with a typical onset temperature of 489 K (216°C). The heat of fusion of the semicrystalline samples is about 15 kJ mol-1. For 100% crystalline PTT the heat of fusion is estimated to be 30 ± 2 kJ mol-1. The heat capacity of solid PTT is linked to an approximate group vibrational spectrum and the Tarasov equation is used to estimate the heat capacity contribution due to skeletal vibrations (θ1 = 550.5 K and θ2 = θ3 = 51 K, Nskeletal = 19). The calculated and experimental heat capacities agree to better than ±3% between 5 and 300 K. The experimental heat capacities of liquid PTT can be expressed by: \documentclass{article}\pagestyle{empty}\begin{document}$ C^L_p(exp) $\end{document} = 211.6 + 0.434 T J K-1 mol-1 and compare to ±0.5% with estimates from the ATHAS data bank using contributions of other polymers with the same constituent groups. The glass transition temperature of the completely amorphous polymer is estimated to be 310-315 K with a ΔCp of about 94 J K-1 mol-1. Knowing Cp of the solid, liquid, and the transition parameters, the thermodynamic functions enthalpy, entropy, and Gibbs function were obtained. With these data one can compute for semicrystalline samples crystallinity changes with temperature, mobile amorphous fractions, and resolve the question of rigid-amorphous fractions.© 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2499-2511, 1998
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...