ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 45 (1992), S. 1265-1279 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: For the first time, a quantitative theoretical analysis (liquid/liquid phase equilibria treated by means of the continuous thermodynamics) of the operating characteristics of continuous polymer fractionation (CPF) was performed. The results of these calculations were compared with data published for CPF of polyethylene. It turned out that the efficiency of the conventional CPF corresponds to approximately two theoretical plates only. For this reason, several improvements, suggested by theoretical considerations, were realized experimentally, for which purpose the system dichloromethane/diethylene glycol/bisphenol-A polycarbonate was chosen. The pulsating sieve-bottom column was replaced by a nonpulsating column filled with glass beads. In this manner, the number of theoretical plates could be raised considerably. A further improvement of the fractionation efficiency results from the reflux of part of the polymer contained in the sol phase. In praxi, this situation was realized by putting a condensor on top of the column and introducing the feed somewhere near its upper third. After predictive calculations and orienting experiments, 125 g of a polycarbonate with Mw = 29 kg/mol and a nonuniformity U = 1.3 were fractionated in four consecutive CPF runs (where the gels were directly used as feed for the next step) into five fractions of approximately equal weight. Except for the lowest-molecular-weight fraction, one obtains nonuniformities on the order of 0.1.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...