ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Digitale Medien
    Digitale Medien
    New York : Wiley-Blackwell
    Journal of Polymer Science Part A-2: Polymer Physics 9 (1971), S. 1851-1869 
    ISSN: 0449-2978
    Schlagwort(e): Physics ; Polymer and Materials Science
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Chemie und Pharmazie , Physik
    Notizen: A wide-line NMR study of chain segmental motion in nylon 66 has been made on a rolled sheet having “double orientation.” In this sheet the crystallite c axis, i.e., the molecular chain axis, is oriented preferentially along the roll direction, and the crystallographic (010) plane lies predominantly parallel to the roll plane, or the plane of the sheet. The direction of the applied magnetic field with respect to the sheet is characterized by two angles, the polar angle γ subtended by the roll direction and the magnetic field, and an azimuthal angle φ. NMR spectra were taken at various values of the angles γ and φ and at three temperatures -196°C, 20°C, and 180°C. The second moments of the absorption spectra taken at 180°C were compared with theoretical predictions of second moments based on two models for the high-temperature segmental motion (called the αc process) in crystalline regions of nylon 66. One model consists of rotational oscillation with amplitudes δ of segments around their axies. The second model is denoted 60° flip-flop motion and consists of rotational 60°C jumps of the segments around their axes between two equilibrium sites with the possibility that the segments also oscillate with a general amplitudes δ around each site. The experimental results are consistent with fairly large amplitudes δ, in which case both models approach the limiting case of full segment rotation. For this reason the experiments do not allow a distinction between the two models. From the second moments at -196°C and 20°C the decrease in second moment due to the low temperature segmental motion, the γ process, is obtained. This motion occurs in noncrystalline regions of nylon 66 and is found to cause a decrease in second moment which is strongly dependent on the two angles γ and φ, implying double orientation of the noncrystalline segments. It is suggested that at low temperatures the noncrystalline segments become immobilized in sites dictated by the crystallite orientation through the extensive hydrogen bonding known to exist in nylon 66.
    Zusätzliches Material: 14 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...