ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Digitale Medien
    Digitale Medien
    Chichester, West Sussex : Wiley-Blackwell
    Mathematical Methods in the Applied Sciences 21 (1998), S. 1343-1363 
    ISSN: 0170-4214
    Schlagwort(e): Engineering ; Numerical Methods and Modeling
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Mathematik
    Notizen: We consider an elastic plate with the non-deformed shape ΩΣ := Ω \ Σ, where Ω is a domain bounded by a smooth closed curve Γ and Σ ⊂ Ω is a curve with the end points {γ1, γ2}. If the force g is given on the part ΓN of Γ, the displacement u is fixed on ΓD := Γ \ ΓN and the body force f is given in Ω, then the displacement vector u(x) = (u1(x), u2(x)) has unbounded derivatives (stress singularities) near γk, k = 1, 2   u(x) = ∑2k, l=1 Kl(γk)r1/2kSCkl(θk) + uR(x)     near γk.Here (rk, θk) denote local curvilinear polar co-ordinates near γk, k = 1, 2, SCkl (θk) are smooth functions defined on [-π, π] and uR(x) ∊ {H2(near γk)}2. The constants Kl(γk),   l = 1, 2, which are called the stress intensity factors at γk (abbr. SIFs), are important parameters in fracture mechanics. We notice that the stress intensity factors Kl(γk) (l = 1, 2;  k = 1, 2) are functionals Kl(γk) = Kl(γk; L, Ω, Σ) depending on the load L, the shape of the plate Ω and the shape of the crack Σ. We say that the crack Σ is safe, if Kl(γk; Ω)2 + K2(γk; Ω)2 〈 RẼ. By a small change of Ω the shape Σ can change to a dangerous one, i.e. we have K1(γk; Ω)2 + K2(γk; Ω)2 ≥ RẼ. Therefore it is important to know how Kl(γk) depends on the shape of Ω.For this reason, we calculate the Gâteaux derivative of Kl(γk) under a class of domain perturbations which includes the approximation of domains by polygonal domains and the Hadamard's parametrization Γ(τ) := {x + τφ(x)n(x);  x ∊ Γ}, where φ is a function on Γ and n is the outward unit normal on Γ. The calculations are quite delicate because of the occurrence of additional stress singularities at the collision points {γ3, γ4} = ΓD ∩ ΓN.The result is derived by the combination of the weight function method and the Generalized J-integral technique (abbr. GJ-integral technique). The GJ-integrals have been proposed by the first author in order to express the variation of energy (energy release rate) by extension of a crack in a 3D-elastic body. This paper begins with the weak solution of the crack problem, the weight function representation of SIF's, GJ-integral technique and finish with the shape sensitivity analysis of SIF's. GJ-integral Jω(u; X) is the sum of the P-integral (line integral) Pω(u, X) and the R-integral (area integral) Rω(u, X). With the help of the GJ-integral technique we derive an R-integral expression for the shape derivative of the potential energy which is valid for all displacement fields u ∊ H1. Using the property that the GJ-integral vanishes for all regular fields u ∊ H2 we convert the R-integral expression for the shape derivative to a P-integral expression. © 1998 B. G. Teubner Stuttgart - John Wiley & Sons, Ltd.
    Zusätzliches Material: 2 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...