ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 12 (1991), S. 454-468 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: The finite difference method for solving the Poisson-Boltzmann equation is used to calculate the reaction field acting on a macromolecular solute due to the surrounding water and ions. Comparisons with analytical test cases indicate that the solvation forces can be calculated rapidly and accurately with this method. These forces act to move charged solute atoms towards the solvent where they are better solvated, and to screen interactions between charges. A way of combining such calculations with conventional molecular dynamics force fields is proposed which requires little modification of existing molecular dynamics programs. Simulations on the alanine dipeptide show that solvent forces affect the conformational dynamics by reducing the preference for internal H-bonding forms, increasing the R-alpha helix preference and reducing transition barriers. These solvent effects are similar to previous explicit solvent simulations, but require little more computation than vacuum simulations. The method should scale up with little increase in computational cost to larger molecules such as proteins and nucleic acids.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...