ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 6 (1985), S. 116-121 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: Third-order Møller-Plesset perturbation theory (MP3) with a 6-31G** basis set was applied to study the relative stabilities of H+(X)2 conformations (X = CO and N2) and their clustering energies. The effect of both basis set extensions and electron correlation is not negligible on the relative stabilities of the H+(CO)2 clusters. The most stable conformation of H+(CO)2 is found to be a C∞v structure in which a carbon atom of CO bonds to the proton of H+(CO), whereas that of H+(N2)2 is a symmetry D∞h structure. The second lowest energy conformations of H+(CO)2 and H+(N2)2 lie within 2 kcal/mol above the energies of the most stable structures. Clustering energies computed using MP3 method with the 6-31G** basis set are in good agreement with the experimental findings of Hiraoka, Saluja, and Kebarle. The low-lying singlet conformations of H+(X)3 (X = CO and N2) have been studied by the use of the Hartree-Fock MO method with the 6-31G** basis set and second-order Møller-Plesset perturbation theory with a 4-31G basis set. The most stable structure is a T-shaped structure in which a carbon atom of CO (or a nitrogen atom of N2) attacks the proton of the most stable conformation of H+(X)2 clusters.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...