ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 40 (1991), S. 491-500 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Two possible reaction paths for the pyrolysis of the ethylester of glyoxylic acid have been studied by ab initio molecular orbital calculations. The basis sets 3-21G and 6-31G* have been used, and electron correlation has been included by Møller-Plesset calculations up to fourth order. Our calculations indicate that the reaction leading to acid and ethylene through a 6-membered ring transition state is favored relative to a process involving a formyl hydrogen transfer via a 5-membered ring to the alkyl unit leading to ethane, CO, and CO2. The predicted activation energies for these two reactions obtained at the highest level of calculation, MP4(SDTQ)/6-31G*, are 50.4 and 71.7 kcal/mol, respectively. The transition states have RHF wave functions that are stable relative to UHF solutions using the 3-21G basis. The geometry of the transition states and IRC following indicate that both reactions are strongly asynchronous: The C—O bond rupture is virtually completed before hydrogen transfer occurs. For comparative purposes, analogous calculations have been performed for the ethylester of formic acid, where it is confirmed that a 6-membered ring transition state is preferred relative to a 4-membered one by around 42 kcal/mol at the highest level of calculation.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...