ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 18 (1991), S. 41-54 
    ISSN: 0886-1544
    Keywords: contractile ring ; mitotic spindle ; birefringence ; video-enhanced microscopy ; fluorescence microscopy ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: This study focuses on the dynamic reorganization of actin and myosin (“conventional” myosin, or myosin-II) during cytokinesis in D. discoideum. This is the first study identifying the birefringence of the spindle microtubules as well as three sets of microfilamentous structure in Dictyostelium. The change of organization in these fibrillar structures was followed in real-time with video microscopy, using a Universal Polarizing Microscope equipped with polarized-light (POL) and differential interference contrast (DIC) optics combined with digital image processing. High-frequency mitotic cells were obtained by semi-synchronous culture, and high-resolution observations were made by utilizing the agar-overlay method (Yumura et al.: Journal of Cell Biology 99:894-899, 1984). The molecular identity of the birefringent structures was determined by fluorescence microscopy. Through-focus observations were performed with an axial resolution of 0.3 μm depth of field.The actomyosin fibrils show a dramatic reorganization throughout mitosis. The fibrils at the leading lamellipodia disappear, and there is a striking assembly of the cortical actomyosin in pro-metaphase, which is accompanied by a decrease in cell volume. The cortical actomyosin gradually increases through anaphase. After late anaphase, very active polar lamellipodia, with an average life of less than 1 minute, are formed. We confirmed that the polar lamellipodia include actin, but not myosin-II. At the cleavage furrow, the microfilaments form two distinctive structures: circular contractile ring at the equator, and a cortical filament array parallel to the polar axis. Myosin is localized in the contractile ring, but not associated with the axial array of F-actin. Actomyosin in the contractile ring gradually transforms into cortical network at the posterior region of daughter cells. The constriction of the furrow is accompanied by a drastic efflux of water as evidenced by highly active contractile vacuole formation and turbulent motion of minute vesicles connected to the furrow. This study demonstrates the presence of a new microfilament structure, as well as the dynamic property of the contractile ring, and sheds new light on the contractile mechanisms underlying cytoki-nesis.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...