ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 8 (1987), S. 193-209 
    ISSN: 0886-1544
    Keywords: growth cone ; microtubules ; actin ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Neurite elongation involves two distinct cytoskeletal functions the “push” of anterograde transport of the cytoskeleton and associated organelles to the neurite tip, and the “pull” exerted by protrusion and generation of tensions in the growth cone. We investigated the roles of these two activities in neurite elongation via the drugs taxol and cytochalasin B (CB), which act on the key cytoskeletal components, microtubules and actin filaments, respectively. When neurons are treated with concentrations of CB below 0.2 μg/ml, neurite elongation, growth cone protrusion, and neurite tension are all inhibited in a similar concentration dependent manner. Protrusive activity and tensions are absent at CB concentrations above 0.3 μg/ml, yet neurite elongation continues at a plateau level. Thus, “pull” does modulate, but it is not required for neurite elongation. Surprisingly, the inhibitory effects of taxol on neurite elongation are removed by the addition of CB at levels that substantially disrupt the actin filaments of neurites. The neurites extended by taxol-CB neurons are unbranched and curiously unattached to the substratum. When CB is added to taxol-treated neurons, neurite extension begins rapidly, even if protein synthesis is severely reduced. We propose that taxol inhibits microtubule transport in neurites, and this inhibition of “push” is reversed by the disruptive effects of CB on the cytoplasmic matrix, allowing taxol-induced microtubule bundles to be transported distally.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...