ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 2 (1982), S. 599-614 
    ISSN: 0886-1544
    Keywords: monoclonal antibodies to tubulin ; radioimmune assay ; immunoautoradiography ; Western blots ; immunofluorescence ; tubulin heterogeneity ; eukaryotic flagellar motility ; immunomotility ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Two monoclonal antibodies reactive for α-tubulin but not for β-tubulin have been prepared, characterized in terms of their relative binding to tubulins from differnt sources by a solid-phase binding assay, immunoautoradiography, and indirect immunofluorescence, and utilized to study flagellar motility. Our results demonstrate that α-tubulins from different species, and even from different tissues of the same species, are nonidentical. Especially interesting was the observation that one of the antibodies, Ab2, immunofluorescently stained microtubules of chick embryo fibroblast cells, but was completely unreactive for microtubules of rat kangaroo (PtK2) fibroblasts; a different antibody, Ab1, stained both cell types. Results of these and additional experiments clearly show that Ab1 and Ab2 recognize discrete and different epitopes on α-tubulin.Monoclonal antitubulins Ab1 and Ab2 each inhibited the bend amplitude of reactivated sea urchin spermatozoa without affecting beat frequencies or the ability of the outer doublet microtubules to slide past each other in elastase-digested models. These results, together with those obtained previously using rabbit polyclonal antitubulin antibodies [Asai and Brokaw, 1980], demonstrate that inhibition of bend amplitude is a common property of antitubulin antibodies and is not due to the binding of antibodies to one specific site on the axoneme. Our results suggest that tubulin subunit conformational changes may occur on the outer doublet lattice and may be integrally involved in the mechanism and control of flagellar bending.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...