ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 162 (1995), S. 147-153 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Changes in intracellular Ca2+ homeostasis are thought to contribute to cell dysfunction in oxidative stress. The hypoxanthine-xanthine oxidase system (X-XO) mobilizes Ca2+ from intracellular stores and induces a marked rise in cytosolic calcium in different cell types. To identify the reactive O2 species involved in the disruption of calcium homeostasis by X-XO, we studied the effect of X-XO on [Ca2+]i by spectrofluorimetry with fura-2 in human umbilical vein endothelial cells (HUVEC). The [Ca2+]i response to X-XO was essentially diminished by superoxide dismutase (SOD) (200 U/ml) and catalase (CAT) (200 U/ml), which scavenge the superoxide anion, O2-, or H2O2, respectively. The [Ca2+]i increase stimulated by 10 nmol H2O2/ml/min, generated from the glucose-glucose oxidase system, or 10 μM H2O2, given as bolus, was about a third of that induced by X-XO (10 nmol O2-/ml/min) but was comparable to that induced by X-XO in the presence of SOD. The X-XO - stimulated [Ca2+]i increase was significantly reduced by 100 μM o-phenanthroline, which inhibits the iron-catalysed formation of the hydroxyl radical. On the other hand, the [Ca2+]i response to low dose X-XO (1 nmol O2-/ml/min) was markedly enhanced in the presence of 1 μM H2O2, which itself had no effect on [Ca2+]i. More than 50% of this synergistic effect was prevented by o-phenanthroline. These results indicate that the effect of X-XO on calcium homeostasis appears to result from an interaction of O2- and H2O2, which could be explained by the formation of the hydroxyl radical. © 1995 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...