ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 110 (1982), S. 183-189 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: We have used a methotrexate-resistant mouse 3T6 cell line (M50L3) that overproduces dihydrofolate reductase (DHFR) and its mRNA by a factor of about 300 to study the regulation of DHFR hnRNA synthesis. We have previously shown that when resting (G0) M50L3 cells are serum stimuled to reenter the cell cycle, the amount and rate of synthesis of DHER and the content of DHER mRNA all begin to increase as the cells enter the S phase of the cell cycle. The increase in DHFR mRNA content is due to an increase in the rate of mRNA production. In the present study, we have used the technique of DNA-excess filter hybridization to determine the rate of synthesis of DHFR hnRNA relative to total hnRNA at various times following serum stimulation. We found that the relative rate of DHFR hnRNA synthesis began to increase at about the same time (6 hours), and increased to about the same extent (three to fourfold by 15 hours following stimulation) as we observed previously for DHFR mRNA production. This suggests that the increase in DHFR mRNA production (and consequently DHFR gene expression) is controlled primarily, if not exclusively, at the level of transcription. We also studied the effect of addition of high concentrations of dibutyryl cAMP and theophyllne on DHFR gene transciption. We found that addition of these drugs at the time of stimulation completely blocked the increase in DHFR hnRNA synthesis as well as entry into S phase. Addition of the drugs at either 13 or 20 hours following stimulation led to a rapid decrease in DHFR hnRNA synthesis. The drugs were found to have little effect on the ability of the cells to complete S phase when they were added at 13 hours following stimulation. Our results suggest that high intracellular concentrations of cAMP may effect DHFR gene expression not only by preventing the progession of cells through the G1 phase of the cell cycle but also by affecting the rate of DHFR gene transcription in a more direct manner.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...