ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Four new fluoropolymers were pyrolyzed in a vacuum to study rates of volatilization and to identify decomposition products. The polymers thus studied were polyperfluoropropylene, polyperfluoroheptene, poly-4-chloroperfluoroheptadiene-1,6 and poly (1,2,2-triflluorovinyl phenyl ether). Polyperfluoropropylene yielded 100% monomer at temperatures of 300 to 400°C gave an activation energy of 56.6 Kcal/mole. Polyperfluoroheptenes of different molecular weights also yielded 100% monomer on heating. However, they had lower thermal stability than polyperfluoropropylene, but a higher activation energy and a higher pre-exponential factor. Poly-4-chloroperfluoroheptadiene volatilized at a rate of approximately 1% per minute at 380°C. There was very little monomer produced on thermal decomposition and an activation energy of 60 Kcal/mole was obtained from rates of volatilization at 362, 374, and 381°C. Poly (trifluorovinyl phenyl ether) showed a 25% carbonized residue at 500°C pyrolysis. The polymer decomposes into fragments containing very little monomer. Undesirable low molecular weight components in the polymer are still to be eliminated.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...