ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 32 (1996), S. 165-173 
    ISSN: 0021-9304
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: Using surface-photochemistry - driven microprocessing, striped patterns of cell-adhesive and nonadhesive domains were prepared on tissue-culture dishes. The width of striped patterns ranged from 20 to 130 μm. When endothelial cells were cultured on such dimensionally well-defined surfaces, cells adhered, migrated, and proliferated only on cell-adhesive domains. Migration potentials such as tracks of moving cells and migration rates were determined using a time-lapse video recording apparatus under a phase-contrast microscope and a computer-assisted image analyzer. The migration track in the direction of the width of the stripe-pattern was limited to the size of the width, and effective migratory distance over 400 min of observation was considerably reduced, to almost half that for a nontreated surface, whereas migratory rate was not changed by surface processing, irrespective of the stripe-pattern width. After a 2-day culture, oriented patterned cellular sheets were obtained. Cells were elongated and aligned along the axis of the striped pattern. The degrees of orientation and elongation were enhanced with a decrease of the line width. At the narrowest surface domain, cells only migrated back and forth, and eventually they became highly elongated and oriented along the axis of the domain. These results indicated that the adhesion area, migrating direction, and orientation of cells can be controlled by this method with micron-order precision. This method provides quantitative information on the kinetics of the migration process and the morphogenesis of the microprocessed surface. © 1996 John Wiley & Sons, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...