ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 29 (1995), S. 749-756 
    ISSN: 0021-9304
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: This article reports the development of micropatterning technology fo cultured cells by precise surface regional modification via photochemical fixation of phenyl azidoderivatized polymers on polymer surfaces. Photoreactive polymers prepared in this study included poly(N,N, -dimethylacrylamide-co-3-azidostyrene), bis-4-azidobenzamide-polyethylene glycol, and poly(styre-co-3-azido-styrene). The photochemical fixation of these photoreactive polymers consisted of three steps: (1) coating of a photoreactive polymer on a material surface, (2) ultraviolet irradiation through a photomask, and (3) removal of nonreacted polymer by a solvent. Electron spectroscopy for chemical analysis and water contact angle measurement were employed for surface characterization. Two different types of regionally modified surfaces were prepared; one was a hydrophilic polymer regionally fixed on a tissue culture dish and the other was a hydrophobic polymer regionally fixed on poly(vinyl alcohol) (PVA). Photochemical surface microfabrication permits μ-order dimensional precision, which was verified by the micropatterned tissue formation of bovine aorta endothelial cells (ECs) when ECs were seeded on these surfaces. ECs adhered, spread, and confluently proliferated only on uncoated tissue culture dish surfaces or hydrophobic regions on PVA. Thus, the regionally differentiated cell adhesional regions were created by photo chemically driven surface microprocessing. © 1995 John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...