ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Bioelectromagnetics 2 (1981), S. 23-32 
    ISSN: 0197-8462
    Keywords: biological effects of oscillating electric fields ; excitable cells ; voltage-sensitive ion channels ; gating charges ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Physics
    Notes: An alternating component of potential across the membrane of an excitable cell may change the membrane conductance by interacting with the voltagesensing charged groups of the protein macromolecules that form voltage-sensitive ion channels. Because the probability that a voltage sensor is in a given state is a highly nonlinear function of the applied electric field, the average occupancy of a particular state will change in an oscillating electric field of sufficient magnitude. This “rectification” at the level of the voltage sensors could result in conformational changes (gating) that would modify channel conductance. A simplified two-state model is examined where the relaxation time of the voltage sensor is assumed to be considerably faster than the fastest changes of ionic conductance. Significant changes in the occupancy of voltage sensor states in response to an applied oscillating electric field are predicted by the model.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...