ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0730-2312
    Keywords: drug-induced DNA damage ; cis-DDP ; malignant oligodendroglioma ; CAT ; eukaryotic expression vector ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Current evidence suggest an important role for increased repair of drug-induced DNA damage as one of the major mechanisms involved in tumor cell resistance to cis-DDP. In this study, we examined the DNA repair capacity and the activities of three DNA repair related proteins, namely, DNA polymerases α and β, and total DNA ligase in cells of a malignant oligodendroglioma obtained from a patient before therapy and compared it with those of a specimen of the tumor acquired after the patient had failed cis-DDP therapy. DNA repair capacity was quantitated as the extent of reactivation of the chloramphenicol-O-acetyltransferase (CAT) gene in a eukaryotic expression vector that has been damaged and inactivated by prior treatment with cis-DDP and then transfected into the tumor cells. The extent of DNA-platinum adduct formation in the expression vector was determined by flameless atomic absorption spectrometry. The level of cis-DDP resistance of cells of the two tumors was determined with the capillary tumor stem cell assay. We observed a 2.8-fold increased capacity to repair Pt-DNA adducts and reactivate the CAT gene in cells of the tumor obtained after cis-DDP therapy, compared to cells of the untreated tumor. This was associated with increases of 9.4-fold and a 2.3-fold, respectively, in DNA polymerase β and total DNA ligase activities in cells of the treated tumor. At 5 μM cis-DDP, there was a 5.9-fold increase in the in vitro cis-DDP resistance of post-therapy tumor cells relative to cells of the untreated tumor. No significant difference in DNA polymerase α activity was observed between the two tumors. These data suggest that the enhanced ability to repair cis-DDP induced DNA damage, mediated, in part, by increased tumor DNA polymerase β and DNA ligase activities, plays an important role in the in vivo acquisition of cis-DDP resistance in human malignant gliomas, and that these proteins and/or their encoding genes may represent critical targets for strategies to overcome such resistance clinically.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...