ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 51 (1996), S. 305-316 
    ISSN: 0006-3592
    Keywords: ATP ; regeneration ; ATPase ; ATP synthase ; electrodialysis ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: We investigated the possibility of using thermostable ATP synthase (TF0F1) for a new ATP regeneration method. TF0F1 was purified from a thermophilic bacterium, PS3, and reconstituted into liposomes. ATP synthesis experiments showed that TF0F1 liposomes could synthesize ATP in micromole concentrations by acid-base change. The acid-base change was repeated six times over an 11-day period with no detectable loss of activity at the reaction temperature (45°C). Given these encouraging results, we conceptualized and modeled a system to synthesize ATP using ATP synthase with energy supplied by acid-base change. In this system, liposomes containing ATP synthase are immobilized on small glass spheres that facilitate separation of buffers from the liposomes after the acid-base change. Compared to an alternate system that uses membranes to separate the buffers from the liposomes, the glass spheres reduce inefficient mixing of acidic and basic buffers during the acid-base change. To increase the ATP synthesis yield, this system uses electrodialysis to regenerate a potassium gradient after the acid-base change. It also employs water-splitting electrodialysis to regenerate KOH and HCl required to adjust the pH of acidic and basic buffers. All reagents are recycled, so electrical energy is the only required input. © 1996 John Wiley & Sons, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...