ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 28 (1986), S. 1127-1137 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Two microorganisms, E. coli and S. cerevisiae, competing for glucose were maintained in a stable cycle of coexistence by alternating the growth advantage between the two organisms by oscillating the pH in a Chemostat. Pure culture experiments found S. cerevisiae to be insensitive to pH between 5 and 4.3 with a maximum specific growth rate (μmax) of 0.4/hr; while μmax of E. coli decreased from 0.6 h-1 at pH 5 to 0.1 h-1 at pH 4.3. Steady-state and cross-inoculation chemostat runs at a dilution rate of 0.17 h-1 confirmed the expectation that the mixed culture system is unstable at constant pH with E. coli dominating at pH 5 and S. cerevisiae dominating at pH 4.3. Three pH oscillation experiments were performed at D =0.17 h-1 with 1 g per liter glucose feed. The 16 h/16 h cycle was stable for six periods with a stable alternating cycle of E. coli and S. cerevisiae being quickly established. A 18 h pH 5/14 h pH 4.3 cycle was found to be stable with smaller yeast concentrations. A 6 h/6 h cycle was found unstable with yeast washout. Simulation results were compared with these runs and were used to predict the onset of instability. Oscillations of pH can force stable persistence of a competing mixed culture that is otherwise unstable. Thus, varying conditions are experimentally demonstrated to be one explanation for competitive coexistence.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...