ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 42 (1996), S. 713-726 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Protein partitioning kinetics was measured for the semibatch extraction of lysozyme in a laboratory-scale, liquid-liquid spray column. The organic, isooctane phase contained reverse micelles formed from the anionic surfactant, sodium di-2-ethylhexyl sulfosuccinate. For the extraction of protein from aqueous to reverse micellar phases, experiments were performed over a range of dispersed-phase flow rates for cases of the organic- or aqueous-phase dispersion. The influence of aqueous-phase pH and ionic strength, which influence electrostatic interactions between protein and reverse micelles, was also investigated. Results were interpreted in terms of a two-film model of mass transfer. The nature of the dispersed pahse could significantly influence the partitioning kinetics, while study of the droplet hydrodynamics suggested that stagnant drops were formed regardless of which phase was dispersed. Literature correlations for describing the droplet-formation process and droplet hydrodynamics predicted measured values satisfactorily. Attempts wer also made to predict overall mass-transfer coefficients based on existing correlations describing mass transfer during droplet formation, free rise (or fall), and coalescene. Predicted values of KL were 2-10 times greater than measured values, probably because of large concentrations of surfactant used to formulate the reverse micelle phases. This approach did, however, provide detailed information on the quantity of protein transferred during the successive processes of droplet formation, free rise (or fall) and coalescence.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...