ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 41 (1995), S. 2465-2475 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Six algorithms following single particle trajectories are used to predict the axial dispersion in rolling or slumping flow in a continuous rotary kiln. Models incorporating different physical phenomena show that axial dispersion is affected by the Froude number, L/D ratio, solid fill level, and rolling or slumping layer thickness. The main cause of axial dispersion is segregation of the nonuniform particle size, density and shape. In a rolling bed with uniform particles the rolling layer thickness and the time of roll have to be accounted for in the prediction of the dispersion. The Peclet numbers computed for sold particles with uniform physical properties are of the order of 104. The sold segregated motion may lead to Peclet numbers of the order of 10 - 103, a much larger dispersion. The main obstacle for a-priori prediction of the axial dispersion is lack of a reliable relation between the segregated roll or slump distance and the variation in particles properties, as well as the change in segregation as the flow properties of kparticles are changed during calcination.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...