ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 35 (1989), S. 230-240 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The unsteady, impulsive motion of a compressible bubble expanding out of a constricted capillary is quantified with a macroscopic momentum balance. Numerical solution demonstrates the importance of the Ohnesorge number, the geometry of the constriction, the length of the initial gas bubble, and the surface tension, density, and unconstricted capillary radius, which combine to form a characteristic scaling time. Experimental data for the position of the bubble front as a function of time confirm the theoretical result when the time scale for the bubble jump is longer than that required to achieve fully developed parabolic flow. Theory also predicts the capillary number of the bubble jump which, in conjunction with previous theoretical results, determines the time to snap-off of gas bubbles moving through constricted capillaries. Excellent agreement is found with existing experimental data for Ohnesorge numbers ranging from 5 × 10-3 to 0.3.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...