ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-03-01
    Description: “Flip‐flop” detachment mode represents an endmember type of lithosphere‐scale faulting observed at almost amagmatic sections of ultraslow‐spreading mid‐ocean ridges. Recent numerical experiments using an imposed steady temperature structure show that an axial temperature maximum is essential to trigger flip‐flop faults by focusing flexural strain in the footwall of the active fault. However, ridge segments without significant melt budget are more likely to be in a transient thermal state controlled, at least partly, by the faulting dynamics themselves. Therefore, we investigate which processes control the thermal structure of the lithosphere and how feedbacks with the deformation mechanisms can explain observed faulting patterns. We present results of 2‐D thermo‐mechanical numerical modeling including serpentinization reactions and dynamic grain size evolution. The model features a novel form of parametrized hydrothermal cooling along fault zones as well as the thermal and rheological effects of periodic sill intrusions. We find that the interplay of hydrothermal fault zone cooling and periodic sill intrusions in the footwall facilitates the flip‐flop detachment mode. Hydrothermal cooling of the fault zone pushes the temperature maximum into the footwall, while intrusions near the temperature maximum further weaken the rock and promote the formation of new faults with opposite polarity. Our model allows us to put constraints on the magnitude of two processes, and we obtain most reasonable melt budgets and hydrothermal heat fluxes if both are considered. Furthermore, we frequently observe two other faulting modes in our experiments complementing flip‐flop faulting to yield a potentially more robust alternative interpretation for existing observations. Plain Language Summary At mid‐ocean ridges, two plates diverge and new seafloor is created. The nature and appearance of this new seafloor strongly depend on spreading velocity and the availability of magmatic melts. At one of the melt‐poorest and slowest‐spreading ridges, a special form of large‐scale tectonic faults, so‐called flip‐flop detachments, can be observed. Tectonic faults can act as pathways for fluids circulating through the seafloor, which provides a significant cooling effect for the young plate. The interplay of magmatic activity, faulting and fluid circulation is evident at many different ridges with different magmatic activity and spreading rates. Flip‐flop faulting is restricted to only a few ridge sections worldwide, and we here investigate the prerequisites for this special spreading mode. To do so, we set up a computer model of an ultraslow‐spreading mid‐ocean ridge including the effects of sparse magmatism as well as the cooling effect associated with fluid circulation. We find that feedbacks between faulting dynamics, hydrothermal cooling and magmatic activity control the magnitude and spatial location of each individual process. Seafloor and subsurface observations are best explained by calculations with moderate melt input and hydrothermal circulation acting together. Key Points We implemented hydrothermal cooling and magmatic intrusion in a thermo‐mechanical model to explain detachment faulting at ultraslow ridges Stable flip‐flop detachment faulting is observed for setups considering both melt input and hydrothermal heat fluxes at realistic magnitudes Two other faulting modes frequently observed in our model offer potential alternative interpretations for existing seafloor observations
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...