ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-04-04
    Description: Chondrules in chondritic meteorites record the earliest stages of formation of the solar system, potentially providing information about the magnitude of early magnetic fields and early physical and chemical conditions. Using first-order reversal curves (FORCs), we map the coercivity distributions and interactions of 32 chondrules from the Allende, Karoonda, and Bjurbole meteorites. Distinctly different distributions and interactions exist for the three meteorites. The coercivity distributions are lognormal shaped, with Bjurbole distributions being bimodal or trimodal. The highest-coercivity mode in the Bjurbole chondrules is derived from tetrataenite, which interacts strongly with the lower-coercivity grains in a manner unlike that seen in terrestrial rocks. Such strong interactions have the potential to bias paleointensity estimates. Moreover, because a significant portion of the coercivity distributions for most of the chondrules is 〈10 mT, low-coercivity magnetic overprints are common. Therefore paleointensities based on the REM method, which rely on ratios of the natural remanent magnetization (NRM) to the saturation isothermal remanent magnetization (IRM) without magnetic cleaning, will probably be biased. The paleointensity bias is found to be about an order of magnitude for most chondrules with low-coercivity overprints. Paleointensity estimates based on a method we call REMc, which uses NRM/IRM ratios after magnetic cleaning, avoid this overprinting bias. Allende chondrules, which are the most pristine and possibly record the paleofield of the early solar system, have a mean REMc paleointensity of 10.4 μT. Karoonda and Bjurbole chondrules, which have experienced some thermal alteration, have REMc paleointensities of 4.6 and 3.2 μT, respectively.
    Description: NSF and INGV
    Description: Published
    Description: B03S90
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: reserved
    Keywords: paleomagnetism coercivity ; paleointensity ; magnetic interactions ; meteorite ; Chondrules ; FORC diagrams ; 01. Atmosphere::01.03. Magnetosphere::01.03.01. Interplanetary physics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...