ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-04-03
    Description: The experience of several authors has shown that continuous measurements of the gravity field, accomplished through spring devices, are strongly affected by changes of the ambient temperature. The apparent, temperature-driven, gravity changes can be up to one order of magnitude higher than the expected changes of the gravity field. Since these effects are frequency-dependent and instrument-related, they must be removed through non-linear techniques and in a case-by-case fashion. Past studies have demonstrated the effectiveness of a Neuro-Fuzzy algorithm as a tool to reduce continuous gravity sequences for the effect of external temperature changes. In the present work, an upgraded version of this previously employed algorithm is tested against the signal from a gravimeter, which was installed in two different sites over consecutive 96-day and 163-day periods. The better performance of the new algorithm with respect to the previous one is proven. Besides, inferences about the site and/or seasonal dependence of the model structure are reported.
    Description: Published
    Description: 247–256
    Description: reserved
    Keywords: Gravimeters ; Exogenous parameter compensantion ; Neuro-Fuzzy algorithm ; Site effects ; 04. Solid Earth::04.03. Geodesy::04.03.05. Gravity variations ; 05. General::05.01. Computational geophysics::05.01.01. Data processing
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1253604 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...