ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2023-01-27
    Beschreibung: Non-stationary signals are often analyzed using raw waveform data or spectrograms of those data; however, the possibility of alternative time–frequency representations being more informative than the original data or spectrograms is yet to be investigated. This paper tested whether alternative time–frequency representations could be more informative for machine learning classification of seismological data. The mentioned hypothesis was evaluated by training three well-established convolutional neural networks using nine time–frequency representations. The results were compared to the base model, which was trained on the raw waveform data. The signals that were used in the experiment are three-component seismogram instances from the Local Earthquakes and Noise DataBase (LEN-DB). The results demonstrate that Pseudo Wigner–Ville and Wigner–Ville time–frequency representations yield significantly better results than the base model, while spectrogram and Margenau–Hill perform significantly worse (p 〈 0.01). Interestingly, the spectrogram, which is often used in signal analysis, had inferior performance when compared to the base model. The findings presented in this research could have notable impacts in the fields of geophysics and seismology as the phenomena that were previously hidden in the seismic noise are now more easily identified. Furthermore, the results indicate that applying Pseudo Wigner–Ville or Wigner–Ville time–frequency representations could result in a large increase in earthquakes in the catalogs and lessen the need to add new stations with an overall reduction in the costs. Finally, the proposed approach of extracting valuable information through time–frequency representations could be applied in other domains as well, such as electroencephalogram and electrocardiogram signal analysis, speech recognition, gravitational waves investigation, and so on.
    Beschreibung: COST project G2Net CA17137 A network for Gravitational Waves, Geophysics and Machine Learning.
    Beschreibung: Published
    Beschreibung: 965
    Beschreibung: 8T. Sismologia in tempo reale e Early Warning Sismico e da Tsunami
    Beschreibung: JCR Journal
    Schlagwort(e): earthquake detection; convolutional neural network; non-stationary signal analysis; classification; time–frequency representation ; 04.06. Seismology
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...