ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-03-04
    Description: The ground-motion median and standard deviation of empirical groundmotion prediction equations (GMPEs) are usually poorly constrained in the nearsource region due to the general lack of strong-motion records. Here we explore the use of a deterministic–stochastic simulation technique, specifically tailored to reproduce directivity effects, to evaluate the expected ground motion and its variability at a near-source site, and seek a strategy to overcome the known GMPEs limitations. To this end, we simulated a large number of equally likely scenario events for three earthquake magnitudes (Mw 7.0, 6.0, and 5.0) and various source-to-site distances. The variability of the explored synthetic ground motion is heteroscedastic, with smaller values for larger earthquakes. The standard deviation is comparable with empirical estimates for smaller events and reduces by 30%–40% for stronger earthquakes. We then illustrate how to incorporate directivity effects into probabilistic seismichazard analysis (PSHA). This goal is pursued by calibrating a set of synthetic GMPEs and reducing their aleatory variability (∼50%) by including a predictive directivity term that depends on the apparent stress parameter obtained through the simulation method. Our results show that, for specific source-to-site configurations, the nonergodic PSHA is very sensitive to the additional epistemic uncertainty that may augment the exceedance probabilities when directivity effects are maximized. The proposed approach may represent a suitable way to compute more accurate hazard estimates.
    Description: This work was supported by the project MASSIMO—Cultural Heritage Monitoring in Seismic Area, PON01/02710—coordinated by Istituto Nazionale di Geofisica e Vulcanologia (INGV) and funded by the Italian Ministry of Education, University and Research and by the Seismic Hazard Center of Istituto Nazionale di Geofisica e Vulcanologia (Centro per la Pericolosità Sismica [CPS]).
    Description: Published
    Description: 966-983
    Description: 5T. Modelli di pericolosità sismica e da maremoto
    Description: JCR Journal
    Keywords: seismogenic sources ; finite fault simulations ; near source ; directivity effects ; ground motion variability ; seismic hazard ; Southern Italy ; 04.06. Seismology ; 05.06. Methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...