ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-08-04
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ganju, N. K., Couvillion, B. R., Defne, Z., & Ackerman, K. Development and application of landsat-based wetland vegetation cover and unvegetated-vegetated marsh ratio (UVVR) for the conterminous United States. Estuaries and Coasts, (2022), https://doi.org/10.1007/s12237-022-01081-x.
    Description: Effective management and restoration of salt marshes and other vegetated intertidal habitats require objective and spatially integrated metrics of geomorphic status and vulnerability. The unvegetated-vegetated marsh ratio (UVVR), a recently developed metric, can be used to establish present-day vegetative cover, identify stability thresholds, and quantify vulnerability to open-water conversion over a range of spatial scales. We developed a Landsat-based approach to quantify the within-pixel vegetated fraction and UVVR for coastal wetlands of the conterminous United States, at 30-m resolution for 2014–2018. Here we present the methodology used to generate the UVVR from spectral indices, along with calibration, validation, and spatial autocorrelation assessments. We then demonstrate multiple applications of the data across varying spatial scales: first, we aggregate the UVVR across individual states and estuaries to quantify total vegetated wetland area for the nation. On the state level, Louisiana and Florida account for over 50% of the nation’s total, while on the estuarine level, the Chesapeake Bay Estuary and selected Louisiana coastal areas each account for over 6% of the nation’s total vegetated wetland area. Second, we present cases where this dataset can be used to track wetland change (e.g., expansion due to restoration and loss due to stressors). Lastly, we propose a classification methodology that delineates areas vulnerable to open-water expansion based on the 5-year mean and standard deviation of the UVVR. Calculating the UVVR for the period-of-record back to 1985, as well as regular updating, will fill a critical gap for tracking national status of salt marshes and other vegetated habitats through time and space.
    Description: This work was supported by the U.S. Geological Survey’s Coastal and Marine Hazards/Resources Program.
    Keywords: Remote-sensing ; Salt marshes ; Tidal wetlands ; Vulnerability ; Geomorphology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...