ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography and Paleoclimatology 35(12), (2020): e2020PA003962, doi:10.1029/2020PA003962.
    Description: The Great Barrier Reef (GBR) is an internationally recognized and widely studied ecosystem, yet little is known about its sea surface temperature (SST) evolution since the Last Glacial Maximum (LGM) (~20 kyr BP). Here, we present the first paleo‐application of Isopora coral‐derived SST calibrations to a suite of 25 previously published fossil Isopora from the central GBR spanning ~25–11 kyr BP. The resultant multicoral Sr/Ca‐ and δ18O‐derived SST anomaly (SSTA) histories are placed within the context of published relative sea level, reef sequence, and coralgal reef assemblage evolution. Our new calculations indicate SSTs were cooler on average by ~5–5.5°C at Noggin Pass (~17°S) and ~7–8°C at Hydrographer's Passage (~20°S) (Sr/Ca‐derived) during the LGM, in line with previous estimates (Felis et al., 2014, https://doi.org/10.1038/ncomms5102). We focus on contextualizing the Younger Dryas Chronozone (YDC, ~12.9–11.7 kyr BP), whose Southern Hemisphere expression, in particular in Australia, is elusive and poorly constrained. Our record does not indicate cooling during the YDC with near‐modern temperatures reached during this interval on the GBR, supporting an asymmetric hemispheric presentation of this climate event. Building on a previous study (Felis et al., 2014, https://doi.org10.1038/ncomms5102), these fossil Isopora SSTA data from the GBR provide new insights into the deglacial reef response, with near‐modern warming during the YDC, since the LGM.
    Description: This work was funded by National Science Foundation (NSF) award OCE 13‐56948 to B. K. L, with NSF GRFP support DGE‐11‐44155 to L. D. B., and the Australian Research Council (grant no. DP1094001) and ANZIC IODP. Partial support for B. K. L's work on this project also came from the Vetlesen Foundation via a gift to the Lamont‐Doherty Earth Observatory. T. F. received funding from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Project number 180346848, through Priority Program 527 “IODP.” A. T. received support from the UK Natural Environment Research Council (NE/H014136/1 and NE/H014268/1). M. T. thanks Ministry of Earth Sciences for support (NCPOR contribution no. J‐84/2020‐21). L. D. B. would also like to thank Kassandra Costa for her input regarding error analysis.
    Description: 2021-06-11
    Keywords: Great Barrier Reef ; coral ; Younger Dryas Chronozone ; sea surface temperature ; Sr/Ca ; Last Glacial Maximum
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...