ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-11-01
    Description: The effect of organic matter on hydrocarbon potential, storage space, and gas content of shale is well-known. Additionally, present-day content of sedimentary organic matter in shale is controlled by depositional and preservation processes. Therefore, a study of the enrichment mechanisms of sedimentary organic matter provides a scientific basis for the determination of favorable areas of shale gas. In this study the Upper Ordovician Xinkailing Fm. and the first member of the Lower Silurian Lishuwo Fm. were examined. Stratigraphic sequences were identified through conventional logs and elemental capture spectrum data. Oxygen isotope analysis was applied to recover paleotemperature of seawater in the study area. The excess silicon content was calculated and the origin of the silica was determined by the Fe-Al-Mn ternary plot. The enrichment mechanism of organic matter was analyzed by two aspects: redox conditions and paleoproductivity. As a result, the stratigraphic interval was divided into two 3rd-order sequences. Through oxygen isotope, the paleotemperature of seawater was 62.7–79.2 °C, providing evidence of the development of hydrothermal activity. Analysis of excess siliceous minerals identified two siliceous mineral origins: terrigenous and hydrothermal. It also revealed an upwards decreasing tendency in hydrothermal activity intensity. Strong hydrothermal activity during the Late Ordovician, recognized as TST1, formed a weak-oxidizing to poor-oxygen environment with high paleoproductivity, which promoted organic matter enrichment. During the Late Ordovician to the Early Silurian, identified as RST1, TST2, and RST2, weakening hydrothermal activity caused the decline of paleoproductivity and increased oxidation of bottom waters, leading to a relative decrease of organic matter content in the shale. Therefore, favorable areas of shale gas accumulation in the Upper Ordovician and Lower Silurian are determined stratigraphically as the TST1, with a high total organic carbonate content. Geographically, the hydrothermally-active area near the plate connection of the Yangtze and the Cathaysian is most favorable.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...