ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-03-26
    Description: The recent discovery of topological superconductors (TSCs) has sparked enormous interest. The realization of TSC requires a delicate tuning of multiple microscopic parameters, which remains a great challenge. Here, we develop a first-principles approach to quantify realistic conditions of TSC by solving self-consistently Bogoliubov-de Gennes equation based on a Wannier function construction of band structure, in presence of Rashba spin-orbit coupling, Zeeman splitting and electron-phonon coupling. We further demonstrate the power of this method by predicting the Mn-doped GeTe (Ge1-xMnxTe) monolayer—a well-known dilute magnetic semiconductor showing superconductivity under hole doping—to be a Class D TSC with Chern number of −1 and chiral Majorana edge modes. By constructing a first-principles phase diagram in the parameter space of temperature and Mn concentration, we propose the TSC phase can be induced at a lower-limit transition temperature of ~40 mK and the Mn concentration of x~0.015%. Our approach can be generally applied to TSCs with a phonon-mediated pairing, providing useful guidance for future experiments.
    Electronic ISSN: 2057-3960
    Topics: Computer Science , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...