ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-04-09
    Description: TET (ten-eleven-translocation) proteins are Fe(ii)- and alpha-ketoglutarate-dependent dioxygenases that modify the methylation status of DNA by successively oxidizing 5-methylcytosine to 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxycytosine, potential intermediates in the active erasure of DNA-methylation marks. Here we show that IDAX (also known as CXXC4), a reported inhibitor of Wnt signalling that has been implicated in malignant renal cell carcinoma and colonic villous adenoma, regulates TET2 protein expression. IDAX was originally encoded within an ancestral TET2 gene that underwent a chromosomal gene inversion during evolution, thus separating the TET2 CXXC domain from the catalytic domain. The IDAX CXXC domain binds DNA sequences containing unmethylated CpG dinucleotides, localizes to promoters and CpG islands in genomic DNA and interacts directly with the catalytic domain of TET2. Unexpectedly, IDAX expression results in caspase activation and TET2 protein downregulation, in a manner that depends on DNA binding through the IDAX CXXC domain, suggesting that IDAX recruits TET2 to DNA before degradation. IDAX depletion prevents TET2 downregulation in differentiating mouse embryonic stem cells, and short hairpin RNA against IDAX increases TET2 protein expression in the human monocytic cell line U937. Notably, we find that the expression and activity of TET3 is also regulated through its CXXC domain. Taken together, these results establish the separate and linked CXXC domains of TET2 and TET3, respectively, as previously unknown regulators of caspase activation and TET enzymatic activity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3643997/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3643997/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ko, Myunggon -- An, Jungeun -- Bandukwala, Hozefa S -- Chavez, Lukas -- Aijo, Tarmo -- Pastor, William A -- Segal, Matthew F -- Li, Huiming -- Koh, Kian Peng -- Lahdesmaki, Harri -- Hogan, Patrick G -- Aravind, L -- Rao, Anjana -- CA151535/CA/NCI NIH HHS/ -- R01 AI040127/AI/NIAID NIH HHS/ -- R01 AI044432/AI/NIAID NIH HHS/ -- R01 AI40127/AI/NIAID NIH HHS/ -- R01 CA151535/CA/NCI NIH HHS/ -- R01 HD065812/HD/NICHD NIH HHS/ -- England -- Nature. 2013 May 2;497(7447):122-6. doi: 10.1038/nature12052. Epub 2013 Apr 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Signaling and Gene Expression, La Jolla Institute for Allergy & Immunology, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23563267" target="_blank"〉PubMed〈/a〉
    Keywords: 5-Methylcytosine/*metabolism ; Animals ; Base Sequence ; Caspases/metabolism ; Catalytic Domain ; CpG Islands/genetics ; DNA Methylation/genetics ; DNA-Binding Proteins/biosynthesis/*chemistry/deficiency/genetics/*metabolism ; Dioxygenases/chemistry/genetics/metabolism ; Down-Regulation ; Embryonic Stem Cells/metabolism ; Enzyme Activation ; HEK293 Cells ; Humans ; Mice ; Oxidation-Reduction ; Promoter Regions, Genetic/genetics ; Protein Interaction Domains and Motifs ; Protein Structure, Tertiary ; Proto-Oncogene Proteins/biosynthesis/chemistry/genetics/*metabolism ; Transcription Factors/*chemistry/deficiency/genetics/*metabolism ; U937 Cells
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...