ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: We are performing oxidation and reduction reactions on hydrated ferric oxide minerals in order to investigate how these might alter under a variety of conditions on the surface of Mars. Preliminary experiments on ferrihydrite and goethite showed that heating these minerals in a dry oxidizing environment produces fine-grained hematite, while heating these minerals in a reducing environment produces fine-grained magnetite. Under Mars-like oxidation levels this magnetite then oxidizes to maghemite. These reactions are dependent on the presence of water and organic material that can act as a reductant. We are using reflectance and Mossbauer spectroscopy to characterize the reaction products and TEM to analyze the sample texture. Our preliminary results indicate that magnetite and maghemite could be formed in the soil on Mars from ferrihydrite and goethite if organics were present on early Mars.
    Keywords: Geophysics
    Type: Lunar and Planetary Science Conference (37th); Mar 13, 2006 - Mar 17, 2006; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...