ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: Advanced thin film sensors are being developed to provide accurate surface temperature, heat flux and strain measurements for components used in hostile propulsion environments. These sensors are sputter deposited and microfabricated directly onto the test articles with no additional bonding agent. The thickness of the sensors is only a few micrometers which creates minimal disturbance of the gas flow over the test surface. Thus thin film sensors have the advantage over conventional wire- based sensors by providing minimally intrusive measurement and having a faster response. These thin film sensors are being developed for characterization of advanced materials and structures in hostile, high-temperature environments, and for validation of design codes. This paper presents the advances of three high temperature thin film sensor technologies developed at NASA Lewis Research Center: thermocouples, heat-flux gages and strain gages. The fabrication techniques of these thin film sensors which include physical vapor deposition, photolithography patterning and lead Wire attachment are described. Sensors demonstrations on a variety of engine materials, including superalloys, ceramics and advanced ceramic matrix composites, in several hostile, high-temperature test environments are presented. The advantages and limitations of thin film sensor technology are also discussed.
    Keywords: Instrumentation and Photography
    Type: AIAA Paper 98-3610 , Propulsion; Jul 13, 1998 - Jul 15, 1998; Cleveland, OH; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...