ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-01-25
    Description: Two projects using remote sensing of phytoplankton chlorophyll concentrations in the Chesapeake Bay estuary were proposed. The first project used aircraft remote sensing with a compact radiometer system developed at NASA's Goddard Space Flight Center (GSFC), the Ocean Data Acquisition System (ODAS). ODAS includes three radiometers at 460, 490, and 520 nm, an infrared temperature sensor (PRT-5), Loran-C for navigation, and a data acquisition system using a PC and mass storage device. This instrument package can be flown in light aircraft at relatively low expense, permitting regular and frequent flights. Sixteen flights with ODAS were completed using the Virginia Institute of Marine Science's De Havilland 'Beaver'. The goal was to increase spatial and temporal resolution in assaying phytoplankton pigment concentrations in the Chesapeake. At present, analysis is underway of flight data collected between March and July 1989. The second project focused on satellite data gathered with the Nimbus-7 Coastal Zone Color Scanner (CZSC) between late 1978 and mid 1986. The problem in using CZSC data for the Chesapeake Bay is that the optical characteristics of this (and many) coastal and estuarine waters are distinct from those of the open ocean for which algorithms for computing pigment concentrations were developed. The successful use of CZCS data for the estuary requires development of site-specific algorithms and analytical approaches. Of principal importance in developing site-specific procedures is the availability of in-situ data on pigment concentrations. A significant data set was acquired from EPA's Chesapeake Bay Program in Annapolis, Maryland, and clear satellite scenes are being analyzed for which same-day sea truth measurements of pigment were obtained. Both the University of Miami and GSFC Seapak systems are being used in this effort. The main finding to date is an expected one, i.e., the algorithms developed for oceanic waters are inadequate to compute pigment concentrations for the Case 2 waters of the Chesapeake Bay. One reason is the overestimation of aerosol radiances by assuming that water-leaving radiance in Band 4 of CZCS (670 nm) is zero, an assumption that is invalid for the Bay. This prompted any attempts to iterative procedures for estimating the proportion of the Band 4 radiance that is actually attributable to aerosol by estimating the water-leaving component using optical data. A cruise on the Chesapeake the week of 7 August 1989 was conducted to collect additional optical data necessary to this task.
    Keywords: EARTH RESOURCES AND REMOTE SENSING
    Type: Maryland Univ., The 1989 NASA-ASEE Summer Faculty Fellowship Program in Aeronautics and Research; p 33
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...