ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-01-25
    Description: Two projects using remote sensing of phytoplankton chlorophyll concentrations in the Chesapeake Bay estuary were proposed. The first project used aircraft remote sensing with a compact radiometer system developed at NASA's Goddard Space Flight Center (GSFC), the Ocean Data Acquisition System (ODAS). ODAS includes three radiometers at 460, 490, and 520 nm, an infrared temperature sensor (PRT-5), Loran-C for navigation, and a data acquisition system using a PC and mass storage device. This instrument package can be flown in light aircraft at relatively low expense, permitting regular and frequent flights. Sixteen flights with ODAS were completed using the Virginia Institute of Marine Science's De Havilland 'Beaver'. The goal was to increase spatial and temporal resolution in assaying phytoplankton pigment concentrations in the Chesapeake. At present, analysis is underway of flight data collected between March and July 1989. The second project focused on satellite data gathered with the Nimbus-7 Coastal Zone Color Scanner (CZSC) between late 1978 and mid 1986. The problem in using CZSC data for the Chesapeake Bay is that the optical characteristics of this (and many) coastal and estuarine waters are distinct from those of the open ocean for which algorithms for computing pigment concentrations were developed. The successful use of CZCS data for the estuary requires development of site-specific algorithms and analytical approaches. Of principal importance in developing site-specific procedures is the availability of in-situ data on pigment concentrations. A significant data set was acquired from EPA's Chesapeake Bay Program in Annapolis, Maryland, and clear satellite scenes are being analyzed for which same-day sea truth measurements of pigment were obtained. Both the University of Miami and GSFC Seapak systems are being used in this effort. The main finding to date is an expected one, i.e., the algorithms developed for oceanic waters are inadequate to compute pigment concentrations for the Case 2 waters of the Chesapeake Bay. One reason is the overestimation of aerosol radiances by assuming that water-leaving radiance in Band 4 of CZCS (670 nm) is zero, an assumption that is invalid for the Bay. This prompted any attempts to iterative procedures for estimating the proportion of the Band 4 radiance that is actually attributable to aerosol by estimating the water-leaving component using optical data. A cruise on the Chesapeake the week of 7 August 1989 was conducted to collect additional optical data necessary to this task.
    Keywords: EARTH RESOURCES AND REMOTE SENSING
    Type: Maryland Univ., The 1989 NASA-ASEE Summer Faculty Fellowship Program in Aeronautics and Research; p 33
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-12
    Description: We used an extensive set of bio-optical data and radiative transfer (RT) model simulations of radiation fields to investigate relationships between inherent optical properties and remotely sensed quantities in the optically complex, mid-mesohaline Chesapeake Bay waters. Field observations showed that the chlorophyll algorithms used by the MODIS (MODerate resolution Imaging Spectroradiometer) ocean color sensor (i.e. Chlor_a, chlor_MODIS, chlor_a_3 products) do not perform accurately in these Case 2 waters. This is because, when applied to waters with high concentrations of chlorophyll, all MODIS algorithms are based on empirical relationships between chlorophyll concentration and blue-green wavelength remote sensing reflectance (Rrs) ratios that do not account for the typically strong blue-wavelength absorption by non-covarying, dissolved and non-algal particulate components. Stronger correlation was observed between chlorophyll concentration and Rrs ratios in the red (i.e. Rrs(677)/Rrs(554)) where dissolved and non-algal particulate absorption become exponentially smaller. Regionally-specific algorithms that are based on the phytoplankton optical properties in the red wavelength region provide a better basis for satellite monitoring of phytoplankton blooms in these Case 2 waters. Good optical closure was obtained between independently measured Rrs spectra and the optical properties of backscattering, b(sub b), and absorption, a, over the wide range of in-water conditions observed in the Chesapeake Bay. Observed variability in the quantity f/Q (proportionality factor in the relationship between Rrs and the water inherent optical properties ratio b(sub b)/(a+b(sub b)) was consistent with RT model calculations for the specific measurement geometry and water bio-optical characteristics. Data and model results showed that f/Q values in these Case 2 coastal waters are not considerably different from those estimated in previous studies for Case 1 waters. Variation in surface backscattering significantly affected Rrs magnitude across the visible spectrum and was most strongly correlated (R(sup 2)=0.88) with observed variability in Rrs at 670 nm. Surface values of particulate backscattering were strongly correlated with non-algal particulate absorption, a(sub nap), in the blue wavelengths (R(sup 2)=0.83). These results, along with the measured values of backscattering fraction magnitude and non-algal particulate absorption spectral slope, suggest that suspended non-algal particles with high inorganic content are the major water constituents regulating b(sub b) variability in the mid-mesohaline Chesapeake Bay. Remote retrieval of surface b(sub b) and (a(sub nap), from Rrs(670) can be used in regionally-specific satellite algorithms to separate contribution by non-algal particles and dissolved organic matter to total light absorption in the blue, and monitor non-algal suspended particle concentration and distribution in these Case 2 waters.
    Keywords: Oceanography
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-11
    Description: We combined detailed bio-optical measurements and radiative transfer (RT) modeling to perform an optical closure experiment for optically complex and biologically productive Chesapeake Bay waters. We used this experiment to evaluate certain assumptions commonly used when modeling bio-optical processes, and to investigate the relative importance of several optical characteristics needed to accurately model and interpret remote sensing ocean-color observations in these Case 2 waters. Direct measurements were made of the magnitude, variability, and spectral characteristics of backscattering and absorption that are critical for accurate parameterizations in satellite bio-optical algorithms and underwater RT simulations. We found that the ratio of backscattering to total scattering in the mid-mesohaline Chesapeake Bay varied considerably depending on particulate loading, distance from land, and mixing processes, and had an average value of 0.0128 at 530 nm. Incorporating information on the magnitude, variability, and spectral characteristics of particulate backscattering into the RT model, rather than using a volume scattering function commonly assumed for turbid waters, was critical to obtaining agreement between RT calculations and measured radiometric quantities. In situ measurements of absorption coefficients need to be corrected for systematic overestimation due to scattering errors, and this correction commonly employs the assumption that absorption by particulate matter at near infrared wavelengths is zero.
    Keywords: Optics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-28
    Description: Remote sensing measurements of the distribution of phytoplankton chlorophyll concentrations in Chesapeake Bay during 1989 are described. It is shown that remote sensing from light aircraft can complement and extend measurements made from traditional platforms and provide data of improved temporal and spatial resolution, leading to a better understanding of phytoplankton dynamics in the estuary. The developments of the winter-spring diatom bloom in the polyhaline to mesohaline regions of the estuary and of the late-spring and summer dinoflagellate blooms in oligohaline and mesohaline regions are traced. The study presents the local chlorophyll algorithm developed using the NASA Ocean Data Acquisition System data and in situ chlorophyll data, interpolated maps of chlorophyll concentration generated by applying the algorithm to aircraft radiance data, ancillary in situ data on nutrients, turbidity, streamflow, and light availability, and an interpretation of phytoplankton dynamics in terms of the chlorophyll distribution in Chesapeake Bay during 1989.
    Keywords: EARTH RESOURCES AND REMOTE SENSING
    Type: Remote Sensing of Environment (ISSN 0034-4257); 40; 2, Ma; 79-100
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The high temporal and spatial resolution of satellite ocean color observations will prove invaluable for monitoring the health of coastal ecosystems where physical and biological variability demands sampling scales beyond that possible by ship. However, ocean color remote sensing of Case 2 waters is a challenging undertaking due to the optical complexity of the water. The focus of this SIMBIOS support has been to provide in situ optical measurements form Chesapeake Bay (CB) and adjacent mid-Atlantic bight (MAB) waters for use in algorithm development and validation efforts to improve the satellite retrieval of chlorophyll (chl a) in Case 2 waters. CB provides a valuable site for validation of data from ocean color sensors for a number of reasons. First, the physical dimensions of the Bay (greater than 6,500 square kilometers) make retrievals from satellites with a spatial resolution of approximately 1 kilometer (i.e., SeaWiFS) or less (i.e., MODIS) reasonable for most of the ecosystem. Second, CB is highly influenced by freshwater flow from major rivers, making it a classic Case 2 water body with significant concentrations of chlorophyll, particulates and chromophoric dissolved organic matter (CDOM) that highly impact the shape of reflectance spectra. Finally, past and ongoing research efforts provided an expensive data set of optical observations that support the goal of this project.
    Keywords: Oceanography
    Type: NASA/CR-2004-212767
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-15
    Description: The high temporal and spatial resolution of satellite ocean color observations will prove invaluable for monitoring the health of coastal ecosystems where physical and biological variability demands sampling scales beyond that possible by ship. However, ocean color remote sensing of Case 2 waters is a challenging undertaking due to the optical complexity of the water. The focus of this SIMBIOS support has been to provide in situ optical measurements from Chesapeake Bay (CB) and adjacent mid-Atlantic bight (MAB) waters for use in algorithm development and validation efforts to improve the satellite retrieval of chlorophyll (chl a) in Case 2 waters. CB provides a valuable site for validation of data from ocean color sensors for a number of reasons. First, the physical dimensions of the Bay (〉 6,500 km2) make retrievals from satellites with a spatial resolution of approx. 1 km (i.e., SeaWiFS) or less (i.e., MODIS) reasonable for most of the ecosystem. Second, CB is highly influenced by freshwater flow from major rivers, making it a classic Case 2 water body with significant concentrations of chlorophyll, particulates and chromophoric dissolved organic matter (CDOM) that highly impact the shape of reflectance spectra.
    Keywords: Oceanography
    Type: SIMBIOS Project; 2003 Annual Report; 84-97; NASA/TM-2003-212251
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...