ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK; Malden, USA : Munksgaard International Publishers
    Physiologia plantarum 125 (2005), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Jasmonic acid (JA) and methyl jasmonate, collectively known as jasmonates, are naturally occurring in plants; they are important signal molecules involved in induced disease resistance and mediate many physiological activities in plants. We studied the effect of JA and its methyl ester, methyl jasmonate (MeJA), on the induction of nod genes in Bradyrhizobium japonicum GG4 (USDA3) carrying a plasmid with a translational fusion between B. japonicum nodY and lacZ of Escherichia coli, and the expression activity was measured by β-galactosidase activity. Both JA and MeJA strongly induced the expression of nod genes. They have little or no deleterious effects on the growth of B. japonicum cells, while genistein (Gen) showed inhibitory effects. We further studied the effect of JA- and MeJA-induced B. japonicum on soybean nodulation and nitrogen fixation under optimal (25°C) and suboptimal (17°C) root zone temperature (RZT) conditions. B. japonicum cells were grown in liquid yeast extract mannitol media and induced with a range of Gen, JA, and MeJA concentrations, including a treatment control with no inducer added. Soybean seedlings were grown at 25 or 17°C RZT with a constant air temperature (25°C) and inoculated, at the vegetative cotyledonary stage, with various B. japonicum induction treatments. Addition of Gen or jasmonates to B. japonicum, prior to inoculation, enhanced nodulation, nitrogen fixation, and plant growth at suboptimal RZT conditions. A higher concentration of Gen was inhibitory at 25°C, while this same concentration was stimulatory at 17°C. Interestingly, pre-incubation of B. japonicum with JA and MeJA enhanced soybean nodulation and nitrogen fixation under both optimal and suboptimal RZTs. We show that jasmonates are thus a new class of signaling molecules in the B. japonicum-soybean symbiosis and that pre-induction of B. japonicum with jasmonates can be used to enhance soybean nodulation, nitrogen fixation, and early plant growth.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...