ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 103 (1995), S. 7820-7827 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The millimeter-wave rotational spectra of the 13C isotopic species of the CCCCH and CCCN radicals and CCC15N were measured and the rotational, centrifugal distortion, and spin-rotation constants determined, as previously done for the normal isotopic species [Gottlieb et al., Astrophys. J. 275, 916 (1983)]. Substitution (rs) structures were determined for both radicals. For CCCN, an equilibrium structure derived by converting the experimental rotational constants to equilibrium constants using vibration–rotation coupling constants calculated ab initio was compared with a large-scale coupled cluster RCCSD(T) calculation. The calculated vibration–rotation coupling constants and vibrational frequencies should aid future investigations of vibrationally excited CCCN. Less extensive RCCSD(T) calculations are reported here for CCCCH. The equilibrium geometries, excitation energies (Te), and dipole moments of the A2Π excited electronic state in CCCN and CCCCH were also calculated. We estimate that Te=2400±50 cm−1 in CCCN, but in CCCCH the excitation energy is very small (Te=100±50 cm−1). Owing to a large Fermi contact interaction at the terminal carbon, hyperfine structure was resolved in 13CCCCH. Measurements of the fundamental N=0→1 rotational transition of CCCCH with a Fourier transform spectrometer described in the accompanying paper by Chen et al., yielded precise values of the Fermi contact and dipole–dipole hyperfine coupling constants in all four 13C species. The Fermi contact interaction is approximately two times larger in CCCN, allowing a preliminary estimation of hyperfine coupling constant bF in 13CCCN and C13CCN from the millimeter-wave rotational spectra. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...