ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Digitale Medien
    Digitale Medien
    Copenhagen : International Union of Crystallography (IUCr)
    Acta crystallographica 53 (1997), S. 355-363 
    ISSN: 1399-0047
    Quelle: Crystallography Journals Online : IUCR Backfile Archive 1948-2001
    Thema: Chemie und Pharmazie , Geologie und Paläontologie , Physik
    Notizen: A lysozyme isolated from the milk of a monotreme, the echidna, Tachyglossus aculeatus multiaculeatus, has been crystallized (space group P21, with unit-cell dimensions a = 37.1, b = 42.0, c = 38.1 Å, β = 91° and Z = 2) and the structure refined to an R value of 0.167 for all measured data in the resolution range 7.0–1.9 Å. It had previously been inferred from sequence homology with α-lactalbumins that echidna milk lysozyme (EML) would bind one calcium ion per molecule. This has been confirmed in the present study in which the largest peak in a difference Fourier synthesis is associated with a calcium ion. The calcium binding site of EML is very similar to that observed in baboon and human α-lactalbumins, and in a human lysozyme engineered to contain a calcium-binding site. The overall fold of the protein is similar to that of chick-type lysozymes. EML, like pigeon lysozyme, has only 125 residues terminating at a cysteine but in EML this forms a disulfide with a cysteine at residue 9 whereas the equivalent cysteine residue in all other lysozymes of known sequence occurs at position 6. These changes cause some minor structural rearrangements. The binding of calcium appears to have had little effect on the polypeptide backbone conformation and caused only small changes in the conformation of side chains coordinating the calcium ion. A homology modelling study [Acharya, Stuart, Phillips, McKenzie & Teahan (1994). J. Protein Chem. 13(6), 569–584] correctly predicted the overall structure of EML and the nature of its calcium binding site but generally failed to model some more subtle differences observed in the EML structure as evidenced by the fact that the homology model more closely resembles the starting structure from which the model was derived than it does the crystal structure.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...