ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Experiments in fluids 18 (1995), S. 168-173 
    ISSN: 1432-1114
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Three-component, coincident, time-resolved velocity measurements were obtained in the near wall region, y + 〈 100, of a fully developed turbulent pipe flow. The measurements were conducted in the ARL/PSU glycerin tunnel at a Reynolds number (Re h), based on pipe radius and centerline velocity, of 6436 and an Re θ of approximately 730. The reported data include velocity statistics up to fourth order, Reynolds stresses and three component, coincident turbulent velocity spectral estimates. The current data are generally in quite good agreement with the fully developed channel flow direct numerical simulation (DNS) results of Antonia et al. (1992) at Re θ ≃ 700 ∼- 700. The accuracy of the current experimental data and the very good agreement with the DNS results provides evidence for the accuracy of the DNS solutions and thus Antonia's conclusions of very near wall, y + 〈 20, Re dependence on turbulent velocity statistics. The very good agreement between the low Re rectangular channel flow DNS results and the low Re θ flat plate turbulent boundary layer statistics of Karlsson and Johansson (1988) suggests that for y + 〈 30 statistics of similar flows of differing geometry may be compared on the basis of equal Re θ. The current data are available on disk or by anonymous ftp by the first author.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...