ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1319
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Canopy temperatures of wheat, barley, rape and perennial rye grass crops, grown under temperate humid climatic conditions at different irrigation regimes were measured during two growing seasons, 1986 and 1987, by determining the emission of radiation in the wavelength interval 8〈λ〈14 μm. Global radiation, net radiation, air temperature, relative humidity and wind speed were measured simultaneously. The canopy temperature of the crops either fully irrigated or under water stress fluctuated up to 6 °C within a few minutes in response to rapid changes in global radiation. At high level of global radiation (800–1000 W m−2) canopy-air temperature differences up to 8 °C were measured whereas at low level of global radiation (100–200 W m−2) canopy-air temperature differences were found to approach zero or become negative even at severe crop water stress. Canopy temperature differences between water stressed and fully irrigated crops up to 6 °C were measured under conditions of high evaporative demand whereas under conditions of low evaporative demand canopy temperature differences between water stressed and fully irrigated crops approached zero even at severe crop water stress. For each crop the lower base line, i.e. the relationship between canopy-air temperature difference and vapor pressure deficit for a fully irrigated crop, was estimated by linear regression. In most cases a poor correlation was obtained which is attributed to considerable temporal variability in global radiation and wind speed and to the narrow range of prevailing values of vapor pressure deficit. However, from the base line for rape and barley it was possible to calculate apparent values of the aerodynamic resistance and the crop resistance which were of the same order of magnitude as those found for other crops by using this method under more arid climatic conditions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...