ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 20 (1989), S. 59-66 
    ISSN: 1573-0867
    Keywords: Ammonia volatilization ; nitrogen leaching ; denitrification ; time of N application ; wheat ; Triticum aestivum ; Triticale ; irrigation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Grain yield, nitrogen (N) assimilation, ammonia (NH3) volatilization, denitrification and fertilizer N distribution were examined in three commercially grown cereal crops; two were sown into conventionally tilled fields, while the third was direct drilled into an untilled field. The crops were top dressed with urea at establishment, tillering or ear initiation. Crop yield and N assimilation were measured in 16 m by 2.5 m plots receiving 0, 35, 70, 105, 140 or 175 kg N ha−1. A mass balance micrometeorological technique was used to measure NH3 volatilization, and other fertilizer N transformations and transfers were studied using15N labelled urea in microplots. On the conventionally tilled sites application of urea increased the grain yield of wheat from 3.9 to 5.5 t ha−1, when averaged over the five application rates, three application times and two sites. There were no site or application time effects. However, on the direct drilled site, time of application had a significant effect on grain yield. When urea was applied at establishment, grain yield was not significantly increased and the mean yield (2.81 t ha−1) was less than that obtained from treatments fertilized at tillering or ear initiation (4.09 and 4.0 t ha−1, respectively). Much of the variation in grain yield at the no-till site could be ascribed to differences in NH3 volatilization. At the no-till site, NH3 losses were equivalent to 24, 12 and 1% of the N applied at establishment, tillering and ear initiation, respectively. Negligible volatilization of NH3 occurred at the other sites. The surface soil at the no-till site had the highest urease activity and the soil was covered with alkaline ash resulting from stubble burning. Plant recovery of fertilizer N did not vary with application time on conventionally tilled sites (mean 62%). However, plant recovery of15N applied to the no-till site at establishment (35% of the applied N) was significantly less than that from plots where the application was delayed (45% at tillering and 55% at ear initiation, respectively). Leaching of N to below 300 mm depth was minimal (0 to 5% of the applied N). The calculated denitrification losses ranged from 1% to 14% of the applied N. The results show that the relative importance of NH3 volatilization, leaching and denitrification varied with site and fertilization time. The importance of the various N loss mechanisms needs to be taken into account when N fertilization strategies are being developed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...