ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Circuits, systems and signal processing 18 (1999), S. 395-406 
    ISSN: 1531-5878
    Source: Springer Online Journal Archives 1860-2000
    Topics: Electrical Engineering, Measurement and Control Technology
    Notes: Abstract The stability of time-varying autoregressive (TVAR) models is an important issue in many applications such as time-varying spectral estimation, EEG simulation and analysis, and time-varying linear prediction coding (TVLPC). For stationary AR models there are methods that guarantee stability, but the for nonadaptive time-varying approaches there are no such methods. On the other hand, in some situations, such as in EEG analysis, the models that temporarily exhibit roots with almost unit moduli are difficult to use. Thus we may need a tighter stability condition such as stability with margin 1−ϱ. In this paper we propose a method for the estimation of TVAR models that guarantees stability with margin 1−ϱ, that is, the moduli of the roots of the time-varying characteristic polynomial are less than or equal to some arbitrary positive number ϱ for every time instant. The model class is the Subba Rao-Liporace class, in which the time-varying coefficients are constrained to a subspace of the coefficient time evolutions. The method is based on sequential linearization of the associated nonlinear constraints and the subsequent use of a Gauss-Newton-type algorithm. The method is also applied to a simulated autoregressive process.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...